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Abstract

A probabilistic analysis of the Rocchio relevance feedback algorithm, one of the
most popular learning methods from information retrieval, is presented in a
text categorization framework. The analysis results in a probabilistic version of
the Rocchio classifier and offers an explanation for the TFIDF word weighting
heuristic. The Rocchio classifier, its probabilistic variant and a standard naive
Bayes classifier are compared on three text categorization tasks. The results
suggest that the probabilistic algorithms are preferable to the heuristic Rocchio
classifier.
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1 Introduction

Text categorization is the process of grouping documents into different cate-
gories or classes. With the amount of online information growing rapidly, the
need for reliable automatic text categorization has increased. Text categoriza-
tion techniques are used, for example, to build a personalized netnews filter
which learns about the news-reading preferences of a user [Lang, 1995]. They

are used to classify news stories [Hayes et al., 1988] or guide a user’s search on
the World Wide Web [Mitchell et al., 1995].

Two kinds of algorithms have frequently been used for text categorization.
Both are based on the bag-of-words representation developed in information
retrieval. This is an attribute-value representation where documents are repre-
sented by the words occurring in it without attention to their ordering,.

The first kind of algorithm is based on the relevance feedback method
introduced by Rocchio [Rocchio, 1971] for the vector space retrieval model
[Salton, 1991]. It is a nearest neighbor learning method with prototype vectors
using the TFIDF (term frequency / inverse document frequency) [Salton, 1991]
word weighting heuristic. This kind of algorithm will be called a TFIDF classi-
fier in the following.

Naive Bayes classifiers make up the other group of algorithms. Based on the
same bag-of-words representation, these algorithms use probabilistic models to
estimate the likelihood that a given document is in a class. They use this prob-
ability estimate for decision making.

This paper introduces a probabilistic foundation for the TFIDF classifier.
I will show how a particular TFIDF classifier can be analyzed in the same
framework as used for naive Bayes classifiers. The analysis results in a proba-
bilistic version of the TFIDF algorithm, called Pr'TFIDF, that suggests how the
TFIDF algorithm can be improved. Empirical results on three categorization
tasks show that Pr'TFIDF does not only allow a better theoretical understanding
of the TFIDF algorithm, but that it also performs better in practice.

2 Paper Overview

Section 3 gives a short description of the text categorization problem and in-
troduces its working definition used throughout this paper. A TFIDF classifier
and a naive Bayes classifier are described in section 4. Section 5 presents the
probabilistic analysis of the TFIDF classifier and states its implications for text
categorization using TFIDF. Empirical results and the conclusions can be found
in sections 6 and 7.




3 Text Categorization

The problem of text categorization is to classify documents into a fixed number
of classes. But often the underlying concept of how to assign documents to a
class is unknown or is difficult to formulate in a constructive fashion. The prob-
lem discussed in this paper is to find approximations to the category definitions
automatically, given examples of correct category assignments. This task is a
supervised learning problems [Quinlan, 1993] as commonly addressed in pattern
recognition and machine learning.

The working definition of text categorization used in this paper assumes that
the number of categories is fixed and known and each document is assigned to
exactly one of them. To put it more formally, there is a set of classes C and a
set of training documents D. Furthermore, there is a mapping T'(d) € C which
is the true function that assigns documents to a class. T(d) is known for the
documents in the training set. The information contained in the training ex-
amples can be used by the learning algorithm to find a model or hypothesis
H(d) € C which identifies or approximates T'(d). H(d) is the class which the
learned hypothesis assigns document d to and it can be used to classify new
documents. The objective is to find a hypothesis which maximizes accuracy,
the percentage of times a hypothesis makes a correct prediction.

Throughout this paper accuracy will be used as the performance measure.
Other researcher have proposed different evaluation measures, like precision re-
call graphs [Hayes et al., 1988] or the break-even point of recall and precision
[Lewis, 1991]. Nevertheless, accuracy is an appropriate measure for many clas-
sification tasks, since they are not placed in a retrieval setting, but in a setting
where a decision between more than two equally valuable classes has to be made.

4 Learning Methods for Text Categorization

This section describes the general framework for the experiments presented in
this paper and defines the particular TFIDF classifier and the naive Bayes clas-
sifier used. The TFIDF classifier and the probabilistic model introduced for the
naive Bayes classifier will be the basis for the analysis presented in section 5.

4.1 Representation

The representation of a problem has a strong impact on the generalization ac-
curacy of a learning system. For the problem of text categorization a document,
which typically is a string of characters, has to be transformed into a represen-
tation which is suitable for the learning algorithm and the classification task.
As suggested by researchers in the IR community [Lewis, 1992], words seem to
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Figure 1: Bag-of-words representation in an attribute value style.

work well as features for many classification tasks. This simplifies the represen-
tation of documents from sequences of characters to sequences of words.

In addition to using words as indexing terms it is usually assumed that the
ordering of the words in a document does not matter. This way documents no
longer have to be represented as sequences. Instead a document can be repre-
sented as a bag of words. This representation is equivalent to an attribute-value
representation as used in machine learning. Each distinct word is a feature and
the number of times the word occurs in the document is its value. This value is
called the term frequency T'F(w,d) of word w in document d. Figure 1 shows
an example feature vector for a particular document. The terms “feature” and
“word” will be used interchangeably in the following.

Representing documents as a bag of words is a common technique in infor- -
mation retrieval. Nevertheless one has to keep in mind that when using this
representation, some information about the document is lost.

4.2 Feature Selection

In the field of machine learning many have argued that maximum performance
is often not achieved by using all available features, but by using only a “good”
subset of those [Caruana, Freitag, 1994]. The problem of finding a “good” sub-
set of features is called feature selection. Applied to text classification this
means that we want to find a subset of words which helps to discriminate be-
tween classes. Having too few features can make it impossible to formulate a




good hypothesis. But having features which do not help discriminate between
classes adds noise.

In this paper a combination of three feature selection methods is used, which
are explained in more detail below:

1. Pruning of infrequent words.
2. Pruning of high frequency words.

3. Choosing words which have high mutual information [Quinlan, 1993] with
the target concept.

Pruning of infrequent words means that words are only considered as fea-
tures, if they occur at least a times in the training data. In the experiments
described in this paper words had to occur at least 3 times. This removes most
spelling errors and speeds up the following 2 stages of features selection.

In a second step the b most frequently occuring words are removed. This
technique is supposed to eliminate non content words like “the”, “and”, or “for”.

In a final step the remaining words are ranked according to their mutual
information I(T,w) with the target concept. Mutual information measures the
reduction in entropy that is achieved, if one random variable is conditioned on
another one. In our case we look at how well the occurrence of a word predicts
whether an article is in a certain category or not. Mutual information can be
calculated as

I(T,w) = E(T)-E(T|w) (1)
= =Y Px(T(d) = C)-log Pr(T(d) = C)
CecC
+ ) Pr(T(d) = C,w = 0) - log Pr(T(d) = Clw = 0)
ceC
+ Y Pr(T(d) = C,w=1) logPr(T(d) =Clw=1) (2)
CeC

E(X) is the entropy of the random variable X. Pr(T(d) = C) is the proba-
bility that an arbitrary article d is in category C € C. Pr(T(d) = C,w = 1) and
Pr(T(d) = C,w = 0) are the probabilities that article d is in category C and it
does or does not contain word w. Pr(T(d) = C|w = 0) and Pr(T(d) = C|w = 1)
are defined similarly.

To select a subset of n features, the n words with the highest mutual infor-
mation are chosen. An example is given in table 1. The resulting feature (word)




wheat washington | crop

tonnes department | cts
agriculture | soviet inc

grain export winter
usda corn company

Table 1: The 15 words with the highest mutual information for the Reuters
category “wheat”.

set is denoted by F' with |F| = n. The following learning algorithms will only
consider words which are elements of F'.

4.3 Learning Algorithms
4.3.1 TFIDF Classifier

This type of classifier is based on the Rocchio relevance feedback algorithm
[Rocchio, 1971] and uses TFIDF word weights. There are a number of algo-
rithms in this family which differ in their selection of word weighting method and
similarity measure [Salton, Buckley, 1987]. The variant presented here seems to
be the most straightforward application of this type of algorithm to text catego-
rization domains with more than two categories. Similar algorithms have been
used in [Buckley et al., 1994] [Mitchell et al., 1995] [Balabanovic et al., 1995
[Schiitze et al., 1995].

The basic idea of the algorithm is to represent each document d as a vector
d = (dV,...,dIFD) in a vector space so that documents with similar content
have similar vectors. Each dimension of the vector space represents a word se-
lected by the feature selection process described above. This representation is
closely related to the feature vector representation introduced in section 4.1.

The values of the vector elements d() for a document d are calculated as
a combination of the statistics TF(w,d) and DF(w). The term frequency
TF(w,d) is the number of times word w occurs in document d. The docu-
ment frequency DF(w) is the number of documents in which the word w occurs
at least once. The inverse document frequency IDF(w) can be calculated from
the document frequency.

IDF(w) = log ( Dlzﬁlw)) 3)

| D| is the total number of documents. The inverse document frequency of a
word is low if it occurs in many documents and is highest if the word occurs in




only one. The value d(®) of feature w; for document d is then calculated as the
product

d® = TF(w;,d) - IDF(w;) (4)

d® is called the weight of word w; in document d. This word weighting
heuristic says that a word w; is an important indexing term for document d if it
occurs frequently in it (the term frequency is high). On the other hand, words
which occur in many documents are rated less important indexing terms due
to their low inverse document frequency. This representation is equivalent with
the original feature vector representation from section 4.1 with each dimension
being stretched by their IDF(w) value.

The TFIDF algorithm learns a class model by combining document vectors
into a prototype vector ¢ for every class C' € C. Prototype vectors are generated
by adding the document vectors of all documents in the class.

E':Zcf (5)

The resulting set of prototype vectors, one vector for each C € C, represents
the learned model.

This model can be used to classify a new document d’. Again the document
is represented as a vector d’ using the scheme described above. To classify d’
the cosine of the prototype vector of each class with @’ is calculated. The new
document is assigned to the class with which its document vector has the highest
cosine.

Hrripr(d') = argmax cos(d', &) (6)

Hrpipr(d') is the category to which the algorithm assigns document d’. The
cosine measures the angle between the vector of the document being classified
and the prototype vector of each of the classes. The smaller the angle, the larger
the cosine. So @' is assigned to the class which has the smallest angle between

its prototype vector and d’. The algorithm can be summarized in the following
decision rule:

-

d.c
HTFIDF(d,) =argmax —————— (7)
, cec (||| - ||l




El-z |1 d'@ . )
Foee VI @)z S (o2
Y wer(TF(w,d) - IDF(w)) - (TF(w,C) - IDF(w))
VYwer@F(w',C) - IDF(w'))?

TF(w,C) is the number of times word w occurs within the documents in
class C. In (9) the normalization with the length of the document vector is left
out since it does not influence the argmax.

(8)

)

= argmax
cec

4.3.2 Naive Bayes Classifier

The classifier presented in this section uses a probabilistic model of text. Al-
though this model is a strong simplification of the true process by which text is
generated, the hope is that it still captures most of the important characteristics.

Assumption: Documents are generated by drawing words from a probability
distribution. Let’s assume that we have |C| probability distributions, one for
each category. All documents assigned to a particular class are generated from
the probability distribution associated with this class in a number of indepen-
dent trials. The i-th word of the document is generated by the i-th independent
trial. This model is consistent with the bag-of-words assumptions introduced in
section 4.1.

Probabilistic classifiers try to estimate Pr(C|d’), the probability that a doc-
ument d’ is in class C. Bayes’ rule [James, 1985] says that to achieve the highest
classification accuracy, d’ should be assigned to the class for which Pr(C|d’) is
highest.

Hpayps(d') = argmaxPr(C|d') (10)

Bayes’ theorem [James, 1985] can be used to split the estimation of Pr(C|d’)
into two parts.

Pr(d’|C) - Pr(C) (11)
Loec Pr(¢[C) - Pr(C)

Pr(C|d') =

Pr(C) is the prior probability that a document is in class C. Pr(d’|C) is the
likelihood of observing document d’ in a given class.

Pr(C), the estimate of Pr(C), can be calculated from the fraction of the
training documents that is assigned to this class.

€]

Pr(C) = a0l (12)




|C| is the number of training documents in a class.

The estimation of Pr(d’|C) is more difficult. Pr(d’|C) is the probability
of observing a document like d’ in class C. Since there is a huge number of
different documents it is impossible to collect a sufficiently large number of
training examples to estimate this probability without prior knowledge or fur-
ther assumptions. In our case the estimation becomes possible due to the way
documents are generated (assumption). The assumption implies that a word’s
occurrence is dependent on the class the document comes from, but that it oc-
curs independently of the other words in the document. So Pr(d’|C) can be
written as:

|
Pr(d'|C) = H Pr(w;|C) (13)

w; ranges over the sequence of words in document d’ which are element of
the feature vector F. Unlike other probabilistic classifiers [Lewis, 1991], this
classifier does not use the binary occurrence of words in a document as features,
but can take frequency information into account. |d’| is the number of words in
document d’. The estimation of P(d'|C) is reduced to estimating each P(w;|C)
independently. A Bayesian estimate is used for Pr(w;|C).

14 TF(w;, C)
|F|+ Y uieip TF (', C)

Pr(w;|C) = (14)

This estimator, which is often called Laplace estimator, is suggested in
[Vapnik, 1982] (pages 54-55). It assumes that the observation of each word
is a priori equally likely. I found that this Bayesian estimator works well in
practice. Unlike the maximum likelihood estimator [Larson, 1982), it does not
falsely estimates probabilities to be zero.

The following is the resulting decision rule if equations (10), (11) and (13)
are combined.

Pr(C) - T1%! Pr(w;|C
HBAYES(d’) = argrggé( I'( ) 1,_[,_1 ldfl('w | ) ,
EC'EC PI‘(C ) : Hi:l Pr(w,:lC )
Pr(C) - Pr(w|C)TF(w.d)
= MR r( ) ll_IwEF r(wl ) NT F(w,d) (16)
CeC Y ciee Pr(C")  [luer Pr(w|C’) ,

(15)

If Pr(C|d') is not needed as a measure of confidence, the denominator can
be left out since it does not change the argmax.




5 PrTFIDF: A Probabilistic Classifier Derived
from TFIDF

In the following I will analyze the TFIDF classifier in a probabilistic framework.
I will propose a classifier, called PrTFIDF, based on the probabilistic indexing
paradigm [Fuhr, 1989] and then show its equivalence with the TFIDF algorithm
under certain assumptions. The analysis will present a different view on classi-
fication using the Rocchio algorithm and the TFIDF word weighting heuristic.

Other researchers have already proposed theoretical interpretations of the
vector space retrieval model [Bookstein, 1982][Wang et al., 1992} and the TFIDF
word weighting scheme [Wong, Yao, 1989][Wu, Salton, 1981]. However, their
work analyzes only parts of the TFIDF algorithm and is based on information
retrieval instead of text categorization.

5.1 The PrTFIDF Algorithm

The PrTFIDF algorithm makes use of the probabilistic indexing paradigm
[Fuhr, 1989], which offers an elegant way to distinguish between a document
and the representation of a document. First, a function © maps the document
to its representation; then, the classifier uses this representation for decision
making. Like the classifier proposed in the previous section this algorithm tries
to estimate the probability Pr(C|d’, ©) that document d’ is in class C. But now
this probability explicitly includes the method © of how documents are repre-
sented. As in the previous section, Bayes’ rule is used for making a prediction.

Hp,rripr(d) = argmax Pr(C|d’,©) (17)

Pr(C|d',©) can be written in two parts.

Pr(C|d',0) = > _Pr(C|z) - Pr(z|d', ©) (18)

Pr(z|d’,©) maps document d’ to its representation z with a certain proba-
bility accordlng to ©. Pr(C|z) is the probability that a document with repre—
sentation z is in class C.

The representation mapping O is a design choice. Section 5.2 will show that
the mapping presented in the following is motivated by the TFIDF classifier.
In particular, documents will be represented by single words. So £ = w and
Pr(z|d’, ©) = Pr(w|d’, ©). Each word is selected with a certain probability. This
way documents do not have one fixed representation, but several ones. Word w




is chosen as a representation for d’ with the same probability as if it was picked
randomly from the bag of words which makes up d.

TF(w,d)
Zw’EF TF(U)I) d,)
The remaining part of equation 18, the probability Pr(C|z) = Pr(C|w) that

a document with representation z is in class C|, can again be split into two parts
using Bayes’ theorem.

Pr(z|d’, ©) = Pr(w|d',0) =

(19)

Pr(w|C) - Pr(C)
S erec Pr(wIC) - Pr(C")

As in the previous section, Pr(C) can be estimated from the fraction of the
training documents that are assigned to this class.

Pr(Clw) =

(20)

c|
S orce I 1)

|C| is the number of training documents in a class.

Pr(C) =

Making the same assumption about how documents are generated as for the
Bayes classifier (section 4.3.2), Pr(w|C), the likelihood of observing w as a rep-
resentation of a document in class C, can be estimated from the ratio of how
often word w occurred in documents in class C, divided by the total number of
words in the documents in class C.

TF(w,C)
Ew’eF TF('U)’, C)

The resulting decision rule for PrTFIDF is

Pr(w|C) =

(22)

Pr(w|C) - Px(C)
cc Pr(w|C") - Pr(C")

Hp,rripr(d) = arg Iggg% > Pr(w|d,©) (23)
5.2 The Equivalence of TFIDF and PrTFIDF

In the following I will to show the relationship of the PrTFIDF classification
rule to the TFIDF algorithm from section 4.3.1. To achieve equivalence, the
following assumptions have to be made:

10




1. Uniform class priors: Each class contains an equal number of documents.
This assumption is true for a variety of datasets, for example the 20 News-
groups experiment described later in this paper.

2. There is a A so that for all classes:

A S TFW,C)= [ Y (TF(w,C)- IDF(w'))? (24)
w'eF w/eF

This assumption states that the Euclidean length of the prototype vectors
for each class is a linear function of the number of words in the class. The
property is approximately met if each class contains an equivalent number
of high and low frequency words. To find out how well the assumption
holds in practice, I calculated A for the 20 Newsgroups data. The assump-
tion does hold approximately. Using a word vector of 15000 words the
mean for A over the 20 categories is 0.107 with a standard deviation of
0.021 and minimum and maximum values of 0.080 and 0.179.

3. Modified definition of IDF(w): The definition of inverse document fre-
quency as stated in section 4.3.1 was

IDF(w) = log (DIFD(Iw)) (25)

I now introduce a slightly different version of IDF(W) which allows the
transformation of TFIDF into PrTFIDF.

IDF/(w) = sqrt ( ID| ) (26)

DF'(w)

CcecC Zw’EF TF(’LU’, C)

(27)

There are two differences between this definition of IDF(w) and the usual
one. First, DF'(w) is not the number of documents with an occurrence
of word w. Instead it is the sum of the fractions of how much w takes
up of the documents in each class. Nevertheless the dynamics of DF (w)
and DF'(w) are similar. The more often a word w occurs throughout the
corpus, the higher DF(w) and DF'(w). The dynamics are different only
in case there is a small fraction of documents in which the word w occurs
very frequently. Then DF’(w) will rise faster than DF(w).

11




The second difference is that not the logarithm is used to dampen the
effect of the document frequency, but the square root. Nevertheless, both
functions are similar in shape and reduce the impact of high document
frequencies.

In the following I will start with the decision rule for PrTFIDF and transform
it into the decision rule for TFIDF using the assumptions made above.

Pr(w|C) - Pr(C)
Lcrec Pr(w|C') - Pr(CY)

Hp,rripr(d') = arg max ze; -Pr(w|d’,©) (28)
w

The term )i Pr(w|C’) - Pr(C’) in equation 28 can be re-expressed using
the IDF'(w) definition from above.

> Pr(w|C") - Pr(C) P(C)- > Pr(w|C") (29)
Cc'ec C'eC
1 TF(w,C")
= = 30
RPN S e MY
TFgwIC’!
Lerec > uicr TF(w',C7)
= |C]- D] (31)
IC]
IDF'(w)?

(32)

The equality in line (29) holds due to the assumption that all classes have
equal priors. Replacing probabilities with their estimators in line (30), the ex-
pression can be reduced to a function of IDF’(w).

Using this and again substituting probabilities with their estimators, the
decision rule can be rewritten as:

TF(w,C) - IDF'(w)? - TF(w,d")
|'Ew'EF TF(w/’ dl) : Zw’EF TF(w’)C)

1\ —
Hp,rripr(d )—al‘g%lggu; iclC (33)

The forms |C], |C] and }~,,,cp TF(w',d') in the denominator do not influ-
ence the argmax since they are constant over all C' € C; so they can be left
out as shown in (34). The same argument applies for introducing the term
V2wer(TF(w',C) - IDF'(w'))2. 1t equals the number of words in a class
Y-wer TF(w',C) when multiplied with a constant (assumption 2). In the way
this assumption is used here it states that normalization with the Euclidean

12




length and normalization with the number of words produce the same ranking.
The resulting formula is equivalent with the decision rule (9) of TFIDF.

Y wer(TF(w,d)-IDF'(w))-(TF(w,C)-IDF'(w))
V2wer(TF(W',C)- IDF'(w))?

"
Hp,rripr(d )—argrggg( (34)

5.3 Implications of the Analysis

The analysis shows how and under which preconditions the TFIDF classifier
fits into a probabilistic framework. The close relationship to the probabilistic
PrTFIDF classifier offers a theoretical justification for the vector space model
and the TFIDF word weighting heuristic for text categorization. The analy-
sis also suggests that the following changes to the original TFIDF algorithm
might lead to an improved classifier. PrTFIDF is an implementation of TFIDF
incorporating these changes.

e Use of prior probabilities P(C).
e Use of IDF'(w) (section 5.2) for word weighting instead of IDF(w).

o Use of the number of words for normalization instead of the Euclidean
length.

6 Experiments

Experiments were performed to show the performance of PrTFIDF, TFIDF,
and the naive Bayes classifier BAYES on real data. The paper includes results
on three different classification tasks. One task is set in a Netnews domain, the
other two are based on Reuters news stories. For each task I will present results
which show how the three classifiers perform with respect to changing numbers
of examples and changing numbers of words selected in the feature selection
process. Experimental results for additional datasets and additional methods
can be found in [Mitchell et al., 1996].

6.1 Data Sets
6.1.1 Newsgroup Data

This data set consist of Usenet articles Lang collected from 20 different news-
groups (table 2). Over a period of time 1000 articles were taken from each of
the newsgroups, which makes an overall number of 20000 documents in this
collection. Except for a small fraction of the articles, each document belongs
to exactly one newsgroup. The task is to learn which newsgroup an article was

i3




comp.graphics talk.politics.guns

comp.windows.x talk.politics.mideast
comp.os.ms-windows.misc  talk.politics.misc
comp.sys.mac.hardware talk.religion.misc
comp.sys.ibm.pc.hardware soc.religion.christian
sci.electronics alt.atheism

sci.crypt rec.autos

sci.space rec.motorcycles
sci.med rec.sport.baseball
misc.forsale rec.sport.hockey

Table 2: Usenet newsgroups used in newsgroup data.

posted tol.

In addition to the body of an article, the subject line is used for classifi-
cation. The documents in this dataset have the typical properties of Usenet
articles. Many articles contain signature files and parts of other articles are
cited.

The results reported on this dataset are averaged over a number of differ-
ent test/training splits using binomial sign tests for estimating significance. A
random subset of 33% of the data considered in an experiment was used for
testing. For this dataset the 100 most frequent words are thrown out in the
feature selection process.

6.1.2 Reuters Data

The Reuters dataset has been used in a variety of classification experiments
[Hayes et al., 1988] [Lewis, 1991] [Apté and Damerau, 1994] [Lewis, 1992]. The
data was collected by the Carnegie group from the Reuters newswire in 1987.
Lewis compiled the collection into a corpus of 21,450 articles which are classi-
fied into 135 topic categories. Each article can have multiple category labels.
31% of the articles have no category label, 57% have exactly one label and the
remaining 12% have more than one and up to twelve class labels assigned. The
class assignment was done manually.

The distribution of members in each of the classes is very uneven. The 20
most frequently assigned classes are shown in table 3. The category assignment
contains many spelling errors so that articles end up in obviously misspelled

1About 4% of the articles were cross-posted among two of the newsgroups. In these cases
predicting either of the two newsgroups was counted as a correct prediction.

14




earn 4053 | interest 497
acq 2427 | wheat 293
cbond 1122 | ship 290
bypass 1041 | corn 241
money-fx 745 | ebond 228
grain 601 | dlIr 185
crude 585 | money-supply 177
corp-news 51l | oilseed 176
loan 509 | sugar 169
trade 504 | coffee 145

Table 3: The 20 most frequently assigned topic categories for the Reuters data
with the number of examples assigned to them.

categories.

This paper follows the usual experimental setup on this collection to split
the prediction task into binary decision. For each class an independent classifier
is trained which predicts whether or not an article has the topic assigned to it.
The body of the articles and the subject line are used for classification. The ex-
periments described in this paper are not done for all of the categories. Instead
I will present a more detailed analysis of two categories which have certain key
properties. '

The categories “acq” and “wheat” are good representatives of the different
kinds of classes there are in the Reuters data. The category “acq” is the one
with the second most documents in it. It contains articles about corporate ac-
quisitions. Most of them are short news stories in plain text. The category
“wheat” contains articles about wheat in any context.

The “wheat” category has a very narrow definition. There is a small number
of words which are very good clues as to whether a document is in this category
or not. A simple classifier which classifies a document according to whether or
not it contains the word wheat has an accuracy of 99.7%. In the test set, 80 of
the 81 documents in the “wheat” category have the word wheat in it, but only
21 of the 6665 negative examples do. The category “acq” does not have such an
obvious definition. Its concept is more abstract and a successful classifier will
have to consider and combine a number of words.

For the experiments described in this paper the following test/training split

was used. All articles which appeared on April 7, 1987 or before are in the train-
ing set. The articles which appeared on April 8 and later are in the test set. This
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[ [ 20 Newsgroups | Reuters “acq” | Reuters “wheat” |

PrTFIDF 90.3 89.3 95.6
BAYES 88.6 89.3 95.6
TFIDF 82.3 87.9 94.0

Table 4: Maximum accuracy in percent for the best parameter setting.

results in a corpus of 14,704 training examples and 6,746 test examples. To allow
a more differentiated analysis of the results, the data was subsampled in such
a way that there is an equal number of positive and negative examples. Since
for all categories there is a larger number of negative examples than positive
ones, a subset of the negative examples is selected randomly on the training set
as well as on the test set. The results presented here are averaged over a num-
ber of trials and binomial sign tests and t-tests are used to estimate significance.

6.2 Experimental Results
6.2.1 Which Approach is most accurate?

Table 4 shows the maximum accuracy each learning method achieves at the
best parameter setting. On the newsgroup data PrTFIDF performs significantly
better than BAYES and BAYES is significantly better than TFIDF. There is
no difference between the performance of PrTFIDF and BAYES on the both
Reuters tasks. For both Reuters tasks the probabilistic methods perform sig-
nificantly better than TFIDF. Nevertheless, the difference is much smaller than
on the newsgroup data.

6.2.2 How does the Number of Training Examples Influence Accu-
racy?

As expected the accuracy increases with the number of training examples.
This holds for all learning methods and categorization tasks. Nevertheless, there
are differences in how quickly the accuracy increases. Figure 2 shows accuracy
in relation to the number of training examples for the newsgroup experiment.
In contrast to BAYES, PrTFIDF does particularly well for small numbers of
training examples. The performance of BAYES approaches the one of PrT-
FIDF for higher numbers. The accuracy of the TFIDF classifier increases less
quickly than for the probabilistic methods.

For the Reuters category “acq” BAYES and PrTFIDF show nearly identical
curves (table 3). TFIDF is significantly below the two probabilistic methods
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Figure 2: Accuracy versus the number of training examples on the newsgroup
data using the maximum number of features.
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Figure 3: Accuracy versus the number of training examples on the Reuters
category “acq” using the maximum number of features.
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Figure 4: Accuracy versus the number of training examples on the Reuters
category “wheat” using the maximum number of features.

over the whole spectrum. There are no big differences between the three meth-
ods for the Reuters category “wheat” (figure 4).

6.2.3 What is the Influence of the Number of Features on the Ac-
curacy?

Table 5 shows the influence of the number of words chosen during the fea-
ture selection process on the accuracy for the newsgroup data. Keeping the
number of training examples at maximum, the performance of the system is
higher the more words are used. This stands in contrast to observations other
researchers did on other datasets (e. g. [Lewis, 1991]). PrTFIDF and BAYES
are significantly above TFIDF. The overall highest performance is achieved us-
ing PrTFIDF with the largest feature set.

The findings on the Reuters category “acq” are similar. Table 6 shows in-
creasing performance of all methods with an increasing number of features.
Over the whole spectrum PrTFIDF and BAYES perform significantly better
than TFIDF. There is no significant difference in accuracy between BAYES and
PrTFIDF. The highest performance is achieved with BAYES and PrTFIDF us-
ing the maximum number of words.
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Figure 5: Accuracy versus the number of features on the newsgroup data using
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Figure 6: Accuracy versus the number of features on the Reuters category “acq”

using the maximum number of training examples.
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Figure T: Accuracy versus the number of features on the Reuters category
“wheat” using the maximum number of training examples.

The Reuters category “wheat” shows different characteristics from the ones
seen on the previous two datasets. Table 7 shows that for the probabilistic
methods the accuracy does not rise with the number of words used. The high-
est performance is achieved by Pr'TFIDF and BAYES when only the minimum
number of 10 words is used.

The findings for the wheat category are probably due to the different prop-
erties of this task. As described in the previous section the definition of the
category “wheat” is more narrow than the definition of the other ones. The sin-
gle word wheat is a nearly perfect predictor for class membership. This explains
why the maximum performance is achieved for small numbers of words. Adding
more words adds noise, since these are words with lower predictive power.

6.2.4 Which Method is Most Robust for Small Numbers of Training
Examples?

In figure 2, it is interesting to see that with a rising number of training ex-
amples, the performance of BAYES approximates that of PrTFIDF. Relative
to PrTFIDF, BAYES becomes less accurate for big word-vector sizes (figure
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5) on this dataset. Experiments on the newsgroups data have shown that the
smaller the size of the word-vector, the fewer training examples are needed
for BAYES to achieve or exceed the performance of Pr'TFIDF. My conjecture is
that BAYES is very sensitive to the inaccurate probability estimates which arise
with a low number of training examples. Looking at equation 16, each single
estimate P(w|C) can alter the outcome of the decision rule due to its multi-
plicative form. This means that a single bad estimate can completely change
the behavior of the classifier. In PrTFIDF probabilities are not multiplied, but
‘they are combined in a sum. Due to this “averaging” over the probabilities,
single bad estimates do not have such a big influence on the outcome.

This behavior cannot be observed on the other datasets. For the two Reuters
categories the performance of PrTFIDF and BAYES is very similar over the
whole spectrum.

7 Conclusions

This paper shows the relationship between text classifiers using TFIDF and
probabilistic classifiers. It presents a probabilistic analysis of a particular TFIDF
classifier which shows that under certain reasonable assumptions this algorithm
can be described using the same basic techniques from statistical pattern recog-
nition that are used in probabilistic classifiers like BAYES. Furthermore, the
analysis offers a theoretical explanation for the TFIDF word weighting heuristic
in combination with the vector space retrieval model for text categorization. It
results in a probabilistic version of the TFIDF classifier, which can be described
in a probabilistic indexing framework.

Empirical results on three different classification tasks also support the idea
that there is a close relationship between the three algorithms. None of the
three methods failed completely on any of the classification tasks, and all three
algorithms show similar characteristics for varying numbers of training examples
and varying numbers of features. Nevertheless, the two probabilistic methods
showed much better performance than the heuristic TFIDF classifier on one
of the three categorization tasks and smaller gains on the other two. These
empirical results suggest that the probabilistically accurate modelling of the
bag-of-words assumptions is preferable to the heuristic TFIDF modelling. The
probabilistic methods are preferable from a theoretical viewpoint, too, since a
probabilistic framework allows the clear statement and easier understanding of
the simplifying assumptions made.
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8 Future Work

The two probabilistic classifiers described in this paper - and, as the theoretical
analysis shows, the TFIDF classifier - are based on statistical pattern recog-
nition techniques. Classification is done by estimating P(d|C), the likelihood
of observing document d in class C. Machine learning research suggests that
there is the alternative to learn in a “learning as search” framework using ex-
plicit error minimization instead. In this framework the estimation of P(d|C)
is not necessary. Nevertheless, the problem of overfitting arises when learning
is done by explicit error minimization in a noisy environment. This might be a
challenging problem due to the large number of possible features. The methods
described in this paper do not overfit since they do not perform search in a
hypothesis space using explicit error minimization but rely on probability esti-
mates.

9 Acknowledgements

I would like to thank Tom Mitchell for his inspiring comments on this work.
Many thanks also to Sebastian Thrun, Phoebe Sengers, and Sean Slattery for
their suggestions regarding this paper, and to Ken Lang for the dataset and
parts of the code use in the experiments. This research is supported by ARPA
under grant number F33615-93-1-1330.

References

[Apté and Damerau, 1994] C. Apté, F. Damerau, “Automated Learning of De-
ciston Rules for Text Categorization”, ACM Transactions on Information
Systems, Vol. 12, No. 3, July 1994, pages 233-251. :

[Balabanovic et al., 1995] M. Balabanovic, Y. Shoham, “Learning Informa-
tion Retrieval Agents: Ezperiments with Automated Web Brows-
ing”, AAAI Spring Symposium Series on Information Gathering
from Distributed, Heterogeneous Environments, Working Notes, 1995,
http://www.isi.edu/sims/knoblock /sss95 /balabanovic.ps

[Bookstein, 1982] A. Bookstein, “Ezplanation and Generalization of Vector
Models in Information Retrieval”, Research and Development in Infor-
mation Retrieval, Berlin, 1982.

[Buckley et al., 1994] C. Buckley, G. Salton, J. Allan, “The Effect of Adding
Relevance Information in a Relevance Feedback Environment”, Interna-
tional ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, 1994.

22




[Caruana, Freitag, 1994] R. Caruana, D. Freitag, “Greedy Atiribute Selection”,
International Conference on Machine Learning, 1994.

[Fuhr, 1989] N. Fuhr, “Models for Retrieval with Probabilistic Indezing”, Jour-
nal of Information Processing and Management, 25(1), pages 55-72, 1989.

[Hayes et al., 1988] P. Hayes, L. Knecht, M. Cellio, “A news story categorization

system”, Second Conference on Applied Natural Language Processing,
pages 9-17, 1988.

[James, 1985] M. James, “Classification Algorithms”, Wiley, 1985.

[Lang, 1995] K. Lang, “NewsWeeder: Learning to Filier Netnews”, Interna-
tional Conference on Machine Learning, 1995, http://anther.learning.cs.
cmu.edu/ml95.ps

[Larson, 1982] H. Larson, “Introduction to Probability Theory and Statistical
Inference”, Wiley, New York, 1982.

[Lewis, 1991] D. Lewis, “Representation and Learning in Information Re-
trieval”, Ph. D. Thesis, Department of Computer and Information Sci-
ence, University of Massachusetts, COINS Technical Report 91-93, 1991.

[Lewis, 1992] D. Lewis, “An Evaluation of Phrasal and Clustered Representa-
tions on a Text Categorization Task”, International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, 1992.

[Mitchell et al., 1995] R. Armstrong, D. Freitag, T. Joachims, T. Mitchell,
“WebWatcher: A Learning Apprentice for the World Wide Web”, 1995
AAAT Spring Symposium on Information Gathering from Heterogeneous,
Distributed Environments, March 1995, http://www.cs.cmu.edu/afs/cs/
project/theo-6/web-agent /www/webagent-plus.ps.Z

[Mitchell et al., 1996] D. Freitag, H. Hirsh, T. Joachims, A. Kawamura, E. de
Kroon, D. Loewenstern, B. McBarron, T. Mitchell, S. Slattery, “Ezper-
tments in Learning from Tezt”, to be published as a technical report,
School of Computer Science, Carnegie Mellon University, 1996.

[Quinlan, 1993] J.R. Quinlan, “C4.5: Programs for Machine Learning”, Mor-
gan Kaufmann, 1993.

[Rocchio, 1971] J. Rocchio. “Relevance Feedback in Information Retrieval”, in
The SMART Retrieval System: Experiments in Automatic Document
Processing, Chapter 14, pages 313-323, Prentice-Hall Inc., 1971.

[Salton, 1991] G. Salton, “Developments in Automatic Text Retrieval, Science,
Vol. 253, pages 974-979, 1991.

23




[Salton, Buckley, 1987] G. Salton, C. Buckley, “Term Weighting Approaches
in Automatic Text Retrieval”, Technical Report 87-881, Depart-
ment of Computer Science, Cornell University, 1987, http://cs-
tr.cs.cornell.edu/TR/CORNELLCS:TR87-881

[Schiitze et al., 1995] H. Schiitze, D. Hull, J. Pedersen, “A Comparison of Clas-
sifiers and Document Representations for the Routing Problem”, Interna-
tional ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, 1995, ftp://parcftp.xerox.com/pub/qca/SIGIR95.ps

[Vapnik, 1982] V. Vapnik, “Estimation of Dependencies Based on Empirical
Data”, Springer Series in Statistics, Springer-Verlag, 1982.

[Wang et al., 1992] Z. Wang, S. Wong, Y. Yao, “An Analysis of Vector Space
Models Based on Computational Geometry”, International ACM SIGIR
Conference on Research and Development in Information Retrieval, 1992,

[Wong, Yao, 1989] S. Wong, Y. Yao, “A Note on Inverse Document
Frequency Weighting Scheme”, Technical Report 89-990, Depart-
ment of Computer Science, Cornell University, 1989, http://cs-
tr.cs.cornell.edu/TR/CORNELLCS:TR89-990

[Wu, Salton, 1981] H. Wu, G. Salton, “A Comparison of Search Term Weight-
ing: Term Relevance vs. Inverse Document Frequency”, Technical Re-

port 81-457, Department of Computer Science, Cornell University, 1981,
http://cs-tr.cs.cornell.edu/TR/CORNELLCS:TR81-457

24




